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Abstract

Numerous high power pulse devices are being considered for marine applications, particularly
military vessels to include Electro Magnetic Aircraft Launching System, Electro Thermal Gun
(ETG), Particle Beam Weapons, High Powered Lasers, and Rail Guns which are directly
considered in this thesis. Currently marine vessels do not have the power generation capability to
deliver the massive power over the short duration required. The weight, volume, and environment
constraints inherent in marine vessels limit the development of a method to store the power and
deliver it upon request with a sufficient repetition rate as needed by mission requirements.

This thesis mathematically models Flywheels, Superconducting Magnet Energy Storage (SMES),
Capacitors, Compulsators, and Batteries as energy storage devices and graphically illustrates
pertinent data (weight, volume, etc) per pulse power application for the ship designer to
determine suitability for marine vessels.
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1. Introductory Matter

1.0. Definition of Pulse Power within Marine Constraints

Numerous high power pulse devices are being considered for marine applications, particularly
military vessels. These devices include Electro Magnetic Aircraft Launching System, Electro
Thermal Gun (ETG), Particle Beam Weapons, High Powered Lasers, Rail Guns, and other High
Order Applications. These applications require a large amount of power over a short period of
time. Presently marine vessels do not have the power generation capability to deliver a massive
amount of power over the short duration required. A method to store the power and deliver it
upon request with a sufficient repetition rate as needed by mission requirements needs to be
developed. The weight, volume, and environmental constraints inherent in marine vessels limit

this development.

1.1. Statement of Problem:

Numerous high power pulse devices are being considered for marine applications, particularly
military vessels. Three of these devices will be considered in this thesis and are outlined in Table
1 below. Table 1 outlines the power level, energy level, power duration (time), and the pulse
repetition rate (how long before the next pulse?) requirements for EMALS, ETG, and higher

order applications.

Table 1.1: Application parameters

Power Pulse Repetition
Duration Rate
Application Power Level Energy Level
EMALS 40 MW 121 MJ 3 sec 45 sec
ETG 160 MW" 400 kJ 2.5 msec 5 sec
Higher Order 10 GW 20MJ 2 msec .1 sec
Applications

"Computed from a 400kJ pulse with a time duration of 2.5 msec.
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These marine pulse power applications require large amounts of power over a short period of
time. Marine vessels have not been outfitted with the power generation capability to deliver a
massive amount of power over the short duration required. The development and installation of
these systems is constrained by the weight, volume, and environmental limitations inherent in

marine vessels.

The discussion of this thesis will be limited to the energy and power requirements listed above
and the energy storage devices capable of delivering the required pulse power. Being mindful of
naval architecture constraints, the same general arguments and numerical justifications can be

used to determine the “best” energy storage device for any given high-powered application.

1.2. Solution

A math model of Flywheel, SMES, Capacitor, Compulsator and Battery energy storage and
power delivery was constructed to determine the best solution for each end use demand (EMALS,
ETG, Higher Order Applications). The energy storage and conditioning device modeling
identifies the charging time, pulse length, power requirement, repetition rate, deliverable power,
volume to power ratio, weight to power ratio, and the versatility of distribution (e.g. can the
power and conditioning system be placed low in the marine vessel?). Compulsators were also
considered, but a parametric math model was constructed instead of the dramatically more
complicated, in depth model which would have been more accurate. Other concerns were
addressed, such as the need for maintaining SMES low temperatures, containment vessels for
catastrophic failures resulting in high kinetic dissipation of energy (e.g. flying debris), and other
issues unique to a particular energy storage device. Trade off comparisons have been conducted
and presented graphically to determine the "best solution" for the end use power demand

applications.

The number of possible combinations of power supply, energy storage, end use device, and
platform on which they would be installed is somewhat overwhelming and cannot all be covered
in this thesis. However, the analysis method, and tools employed for one such combination can

easily be applied to any other combination with adjustments by the ship designer.

This thesis will consider three end use devices (EMALS, ETG, High Order Application:
“Directed Energy Weapon™) on an aircraft carrier. The three end use devices were chosen to

represent a broad spectrum of power requirements, which in turn may dictate a different “best”




solution energy storage device. The weight and volume limitation values are intangibles
dependent upon the multiple tradeoffs in ship design and are not directly considered in this thesis.
Therefore, an aircraft carrier was chosen to simplify this thesis such that the reader could more
easily consider the possibility of the high energy storage systems without the hard constraints of
weight and volume more apparent in smaller vessels. An aircraft carrier has relatively larger mass
and volume limitations and has much larger electric power plants (104MW). Of course an all-
electric ship would provide an immense amount of electrical power to recharge the energy storage

device while only sacrificing minimal ship speed.

1.3. Concept Level Ship Design

Using the math models in the appendices of this thesis or by devisiﬁg similiar math models, a
competent naval engineer can incorporate the naval architecture outputs (weight, volume, power,
etc.) in a high concept level ship design. In the design spiral (a naval architecture design concept),
the ship designer will provide an energy strorage system which meets the specifications of the
high powered pulsed application. This in turn will drive the weight, volume, and power
allocations for the rest of the ship. The use of the high pulse powered application will determine
the weight group the energy storage device will be assigned (e.g. an energy storage device for an
ETG will be in weight group 700). For those who are not ship designers, this is not an easy task,
since every introduction of a changing variable produces rippling effects in all other variables

throughout the design.

1.4. Other considerations

Since the power needed by the marine vessel will probably be larger than the power generation
systems capability onboard, a priority of power delivery has to be considered. These priorities
will change depending on the real world operational concerns of the ship. In friendly waters, the
priority of the propulsion system would be paramount to maintain safe navigation at sea.

However, in hostile waters, the priority of weapons may exceed those of safe navigation.

The changing power priorities dictates the need to route power to primary applications while

restricting power to other temporally nonessential applications during the "charge" cycle.

Example 1: An electric drive aircraft carrier can afford to route the propulsion power to the

power storage/conditioning device for 5-30 seconds to fully charge the EMALS and then return to
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propelling the ship. The "loss" of propulsion would result in a probable loss of speed from 30 to

29 knots. This is a conservative approach; the actual loss in speed would be less than one knot as

LT:=2240b Mass ., pier = 100000 T knts := .5144444E Velocity, := 30knts
]
. 2
Mass ., rier Velocity
Energy :=
2
L2 .2
_ Mass ., pier\ Velocity, - Velocity,
AEnergy = 5
A = 8.1 106W 57
Energy == -V "D /sec
2:A
Ei
Ve]ocityl = Velocityz2 _| _Enerey
Mass carrier

Velocity, ~ Velocity = 0.578knts
shown below.

The speed would be regained when the propulsion power is restored. The EMALS would be

ready indefinitely until the launch of aircraft when the process would be repeated.

Example 2: After defensive weapons launch (Phalanx with a small ETG), the ship’s vulnerability
is increased until the energy is replenished in the energy storage device for the next defensive
weapons launch. This vulnerability can be improved with a high pulse repetition rate for the

weapon reducing the immediate need to replenish the discharged energy.

The ability to reroute power seems to be an inherent ability of the "All Electric Ship" concept
being proposed by the U.S. Navy. The ability to reroute power will not be demonstrated in this
thesis but can easily be simulated by changing the power supplied to the energy storage device in

the math models in the appendices which will directly impact the charge cycle.
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2. Flywheels

2.0. Flywheel Fundamentals

Notional flywheel schematic: The motor and generator (as well as electronics) would most likely

be the same machine.

Flywheel
Powerin__y | Input Electronics Output Electronics | ower Out

A flywheel is an electomechanical storage system which stores kinetic energy in a rotational

mass. .

2
o
E:=—-
2
where,

E = the energy stored in the flywheel (N-m).

I = flywheel moment of inertia (N-m-sec”) which is directly proportional to the mass of the -
cylinder.

o = rotational velocity (rad/sec).

To increase the energy of the system, power is applied through the input electronics and variable
speed motor resulting in an increased rotational speed of the flywheel. Energy is recovered from
the system via the variable speed generator and output electronics. The amount of energy

recovered from the flywheel system in a given time determines the power delivered.

Normally the power delivered to the flywheel system and the power recovered from the flywheel

system is separated by some time interval. Therefore, the electronics and electric machine (motor

or generator) can be dual purposed. In other words, only one set of electronics is needed for either
power input or power output. The same applies for the electric machine. This results in reduced

mass and volume thereby increasing the specific energy/power and energy/power densities.

Flywheels are typically constructed of either steel (to increase mass) or of a composite material

(to increase maximum rotation velocity). Although steel is thought to be a relatively strong
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material, the maximum tensile stress is quickly reached at high rotational speeds. Highly complex
carbon fiber materials are being used in flywheel systems to achieve speeds of 60,000 rpm.
Where the steel flywheel relies upon the mass of the cylinder for energy storage (E a I),

composite flywheels rely upon the rotational velocity to maximize stored energy (E o o).

As the density of the flywheel is reduced in composite flywheels, higher rotational speeds can be
achieved for the same tensile stress. Kinetic energy is proportional to density (p) and velocity (v)
squared (KE=.5*p*v”). Whereas stress is proportional to p*v. This implies for the same stress,
energy density is inversely proportional to p. (e.g. halving p and doubling v results in the same

stress but a higher KE)

2.1. Energy Losses

2.1.1. Windage Losses

To decrease and nearly eliminate windage losses, the containment vessel for the flywheel is
usually evacuated (of air). Maintaining a vacuum on the containment vessel is a parasitic energy

loss, but is less than the expected windage loss.

2.1.2. Energy Conversion

The input power to the flywheel system is converted numerous times before it is in turn delivered
to the end use item (output power). The AC input power is converted to direct current which is in
turn converted to a variable frequency for the variable speed motor. The electrical energy is then

converted to kinetic energy via the electromagnetic coupling of the variable motor. The losses are

all encountered again converting the kinetic energy to the final output of the flywheel system.

2.1.3. Other Losses

Other losses can be expected from rotational friction of the flywheel bearings. Some flywheel
systems are being proposed and constructed using superconducting magnetic bearings which have
no frictional losses. However, other parasitic losses are introduced in order to maintain the very
low temperatures required by the superconducting material. The bearing losses were lumped with

other parasitic losses in accordance with the parametric assumptions for the M4 DC Flywheel
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Power System of AFS TRINITY Power Corporation. No differentiation was made between types

of bearings due the limitations of this thesis.

2.2. Two types of flywheels

As can be seen by the following table, two major types of flywheels can be developed.

Flywheels: low- speed Flywheels: high- speed
Maximum Power Rating 1650 kW 750 kW
Maximum Power Duration ~30sec > Minutes
Response Time <1 cycle (60Hz)™ <1 cycle (60Hz)"" *
Capital Cost:
Power- related, $ / kW 3007 > 400-8007"*
Balance- of- Plant ~80$ /kWh™™ ~1000 § / KWhT"eeredwRer
Operating Features:
Efficiency 0.9% 0.93%
Parasitic energy reqt. ~1% 30 W/ kW
Lifetime/ Replacement 20 yrs > 20 yrs™!
Size: This is area where 6.6 ft' /kKWh™> 3- 41 /kWh™"
volume/weight is the issue
with marine vessels.
Siting Issues:
Marine Vessels Gyroscope effects Gyroscope effects™ '
Environmental None None
Safety Issues Containment Containment
Technology Readiness Commercial products Low volume production

Table 2.1 Flywheel Comparisons (Ref #’s IAW Bibliography)

Although presently the low speed flywheel stores a larger amount of energy for a lower cost, the
future development of composite rotors and implementation of High Temperature
Superconductor (HTS) bearings will lower the cost of high speed rotors and increase the rotor
energy density. Even with present commercial technology, the high-speed rotor flywheel has a

higher volume/energy density than the low speed rotor flywheel.

2.3. Advantages

There are numerous advantages to using flywheels for energy storage. The advantages listed are
vaguely intuitive and will not be discussed. These advantages will be more easily realized with
the expected technological improvements in the future. However, the advantages of

e increased energy density,

o increased power density,
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e long life (20 years?),

¢ low life cycle costs,

s compactness,

¢ self containment,

e 1o hazardous associated chgmicals, and

e no flammable gases _

have to be compared with the advantages of other energy storage methods such as SMES,

batteries, compulsators, and capacitors.

s

An additional advantage to flywheels is the easy determination of energy available based on

rotational speed of the flywheel.

2.4. Disadvantages

2.4.1. Safety

The largest concern with flywheel technology is if the flywheel rotor bursts from internal
catastrophic stress fractures. Therefore the flywheel rotor must be encapsulated in a structure
capable of withstanding impacts from rotor debris which may exceed several hundred meters per
second. Or the flywheel must be subject to extremely high quality control assurance to obviate
any chance of failure. It should be noted here that steel or titanium flywheels are similar to

turbine wheels; we all ride around on jet airplanes, which seldom fail in this manner.

'2.4.2. Technological Maturity

Flywheel energy storage relies on moving parts (rotating cylinder). In a static environment, the
flywheels are not subject to accelerations in the other 5 degrees of movement (pitch, roll, heave,
surge, sway) assuming yaw does not have a detrimental affect on the parasitic losses of the
flywheel. Since flywheels have yet to be built and tested on marine vessels, demonstrated data is
not yet available. Use in hybrid vehicles may be demonstrative of the expected parasitic losses

onboard ships.
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2.5. Other Considerations

The ship designer will initially be interested in the deliverable power, total energy available,
specific power, specific energy, power density, energy density, and cost of the flywheel energy
storage system. However, the versatility to distribute the system throughout the ship should also

be considered.

Since the flywheel system may be made up of numerous modules, they may be distributed
throughout the ship to minimize vulnerability and increase flexibility in overall ship design. But
as stated above, the untested shipboard movements to which flywheels will be subjected may

limit the installation to the center lower part of the ship thereby inhibiting overall ship design.
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3. SMES

3.0. Fundamentals

Superconducting magnet energy storage (SMES) is a scalable technology, which uses
cryogenically cooled superconducting material to inductively store vast amounts of energy. This
stored energy is deliverable as pulsed power. The SMES storage capacity can range from less
than 0.001 MWh to more than 10,000 MWh (3.6X10*GJ).

3.0.1. How Does a SMES Store Energy?

A cryogenically cooled coil of superconducting material can carry a DC current, which in turn
creates an electromagnetic field. No power dissipation will occur with a resistance free SMES
coil. If not for the parasitic power consumption of maintaining the very low temperature (4.2
Kelvin for American Superconductor SMES units) for the superconducting material, the SMES

coil could store the energy indefinitely.

3.0.2. There Are Two General Configurations For SMES Coils

3.0.2.1. Solenoid

A SMES coil can simply be an open ended cylindrical coil of conducting material. The magnetic
fields would be concentrated in the center of the coil. Each line of the magnetic field would
extend out the “north” end of the coil, and wrap through the air to the “south” end of the coil.
This is the same pattern young students observe with the magnet and iron filings in basic science
classes. The larger the DC current in the coil, the larger the magnetic fields. The larger magnetic
fields in turn produce forces on the coil as the magnetic fields attempt to radially expand the coil,

and coil resists the radial expansion.

3.0.2.2. Toroid

Instead of a cylindrical coil of wire with open ends, the two open ends can meet forming a toroid
(a ring) restricting the magnetic fields to within the toroid. Although the forces are more complex

and the structure is heavier, this eliminates the stray electromagnetic fields, which is an
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environmental concern for personnel. Presently no concrete data has demonstrated that exposure
to high electromagnetic fields are hazardous to personnel (such as high power lines near
residential houses), however, the public concern is such that manufacturers provide a radial

distance from the SMES where leakage electromagnetic field strength drops to 5 gauss.

3.1. Applications:

Inductive energy storage, generally for use with pulsed-duty applications, has been evolving over
the last decade. Cryogenically cooled aluminum inductors have been developed for low-loss, very
short-term energy storage in pulse-forming networks. SMES as described above was developed
for use in high-power, directed-energy weapons applications but has evolved into commercial

applications for long-term energy storage for uninterruptable power sources.

The key technological challenges for SMES development in the future are: superconducting
materials, shielding large EM fields produced by SMES, and high-strength composite materials
for containment of the large forces associated with magnetic energy storage. Trends in these areas
would indicate that practical superconductors operating above 100 K and composite materials

with yield strengths exceeding 188 kpsi may become available 20 to 30 years hence.

The overall technology of cryogenics and superconductivity is such that SMES for small-scale,
power-quality applications is being built today. SMES units appear to be feasible for some
commercial utility applications at a cost that is competitive with other technologies. This is

quickly outweighed by the key technological challenges listed above as discussed below.

3.2. Advantages:

The advantages to using SMES technology is listed below:
e The energy is stored in a magnetic field (no moving parts).

e No conversion of electrical energy (to kinetic/chemical) required, although voltage/frequency

conversions may be required.

e Self-contained: assuming the subsystems providing vacuum, cooling, etc is within the

containment.
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o Contains no hazardous chemicals, although the extreme temperature of the cryogenic fluid is

considered to be hazardous.
e Super conducting wires result in virtually no losses
e No Flammable Gases, and

e Large amounts of electrical energy can be released (or stored) in fractions of a second. This

would be very useful in recovering kinetic energy when recovering aircraft.

3.3. Disadvantages:

The advantages are offset by the disadvantages listed below:
e Cryogenic Hardware is required
e Basic Systems are DC, but can be converted to AC, and

e Small perturbations in temperature may cause the SMES to quench. This can be presumably

corrected with a well-designed SMES.
e Shielding stray fields may require a large mass of iron.

e The SMES coil requires extensive reinforcement to contain the large forces associated with

the magnetic fields.

3.4. SMES Challenges

3.4.1. Quenching:

Quenching occurs when the SMES transitions from its superconducting state to a normal state.
When a small portion of the SMES becomes normal, a resistance is introduced to the large
circulating DC current which in turn generates excessive heat. This causes other portions of the
SMES to go into a normal state. This chain reaction causes the entire SMES to go into a normal
state within seconds. The heat generated is enough to vaporize the cooling medium (normally
helium) which in turn pressurizes the containment vessel. Quenching is addressed by

electronically providing an alternate path for the DC current in the case of a quench. Failure to
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control a quench and subsequently vent the vessel may result in high kinetic containment failure

(e.g. explosion).

To compensate for quenching and subsequent containment pressurization, the mass of the

containment vessel is increased.

3.4.2. Field containment

Another difficulty is the magnetic field containment and the resultant forces applied within the
SMES coil. All the energy of the SMES is contained within the magnetic field, therefore a strong
structure must be constructed to contain the field which may reach a density of 30T. This is not
an inconsequential tasking. The structure must be able to withstand pressures (tensile, shear, and
torsion) of as much as 2 MPa (300psi). The advantages gained from weight and volume can be

quickly eliminated by the structure needed to contain the magnetic fields.

New approaches are being explored and developed to address these issues. The most promising is
a Force Balanced Coil for Large Scale SMES to address the strength characteristic needed in the
containment vessel. Even if the stress can be balanced throughout the SMES material, the
maximum energy storage capacity will still be limited by the working stress of the SMES

material and the volume of the SMES.

Energy = Working stress of material X Volume of Structure under tension

3.4.3. Summary

In reviewing table 3.1 below, specific energy and energy densities are listed for two different
considerations. The first is when the energy storage device is considered independently of the
pulsed power application. This is typically the published values of the commercial manufacturers.
The second is when the energy storage device is considered in use with the pulsed power
application. The impact derives from the level of power and the duration of the power required by
the pulsed power application. The energy released by the energy storage device is the only energy
needed, which of course reduces the specific energy and energy density of the energy storage

device.
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EMALS ETG HOA
Specific.Power (kW/kg) 0.484 116.197 242.078
Specific.Energy_application (kJ/kg) 1.467 1.475 1.468
Specific.Energy storage device (kJ/kg) 1.467 1.467 1.467
Power.Density (KW/m") 16.502 3.96E+3 8.251E+3
Energy.Density_application (kJ/m’) 50 50 50
Energy.Density Storage device (MJ/m®) 0.05 0.05 0.05

Table 3.1: SMES Summary

To achieve the improvements in capacity and reductions in size and weight required by naval

applications, while maintaining safety for personnel, continued development of materials and

manufacturing methods for SMES systems is required.
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4. Capacitors

4.0. Fundamentals

A capacitor typically consists of two thin conducting materials (plates or foils) separated by a thin
insulating material. By applying voltage across the physically separated plates, energy is stored in

the polarized insulating material.

The greater the voltage or the greater the capacitance, the greater the energy. Capacitors can be
charged over a long or short time interval and then discharged over a long or short time interval.
This provides the capability to charge with a relatively small power source and then discharge at a

much greater power level (over a shorter time interval).

The operating performance of the capacitor depends on the construction material of the plates or
the insulation material and also depends on the construction geometry. The nomenclature of the

capacitor typically describes the construction material and geometry.

4.1. Ceramic Capacitors

Ceramic capacitors provide moderate energy density, high power density, and are available in
very small (picofarad) to moderate size (10100 F, 5-500 Vdc) capacitance values. Ceramic
capacitors are typically configured for surface mounting on low voltage DC circuit boards.

Therefore ceramic capacitors will not be considered for high energy, pulsed power applications.

4.2. Electrolytic Capacitors

Electrolytic capacitors provide moderate energy and power densities, but have high equivalent
series resistances (ESR) and high dissipation power factors (Lossy). Electrolytic capacitors are
normally constructed of either liquid impregnant (Aluminum) or dry impregnant (Tantalum) for
the dielectric medium. Electrolytic capacitors also are polarity dependent resulting in usage

primarily in DC circuits involving filtering, rectified circuits, some pulsing circuits such as strobe
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lights and silicon controlled rectified (SCR) commutation circuits, and fractional horsepower
motors. Typical sizes consist of moderate to large capacitors (1 — 100,000uF) at up to 600 V.
Therefore, electrolytic capacitors will not be considered for high energy, pulsed power

applications.

4.3. Film or Foil Capacitors

Film capacitors are readily scalable from nanojoules to hundreds of kilojoules. Film capacitors
can provide high reactive power (>1 KVAR) at modest energy density (0.1-1.5 kJ/kg) and high
power density (>50 KVAR/kg). Film capacitors are polarity independent. They have a low
equivalent resistance (ESR <1% loss through heat dissipation), low equivalent series inductance
(ESL< 10nH), and a very low dissipation factor (<1%). Film capacitors can operate at higher
voltages (1-100kV) and have larger capacitances (>100F) for uses in high power electronics
pulse-duty circuits, high frequency filtering, continuous ac operation, solid state switch snubbers,
SCR commutation circuits, power factor correction, and fractional to large horsepower motor
start and run capacitors. Therefore film capacitors will be explored for use in high energy, pulsed

power applications in the following section.

4.4. Metalized Electrode Capacitors (MEC)

The need for graceful-aging pulsed capacitors which deliver energy over time periods of
milliseconds through seconds (e.g., high energy weapons, electromagnetic guns, EMALS) has
precipitated the development of large metallized electrode pulsed capacitors. These capacitors
differ radically from capacitors that use discrete aluminum foil electrodes resulting in large
pulsed energy discharge capacitors in the voltage range of 2-35 kVand volumetric energy

densities up to 2.5 MJ/m? (the analysis shows only 2MJ/m?).

Metallized electrode capacitors are extremely consistent and can be designed at high energy
densities, for cycle-lifes up to 50,000 discharges, without the infantile failure mode problem
common in solid aluminum foil capacitors. The known, predictable aging rate stems from internal
faults being cleared through vaporization or oxidation before significant current flows into the
fault site. This results in tens of thousands of cycles before the capacitor capacitance is
substantially reduced (by 5%). The capacitor end of life is 95% of original value determined from

the swelling of the capacitor case during vaporization when faults are cleared.
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High energy density metallized electrode pulsed capacitors typically have a life, when held at
peak charging voltage, of fewer than 100 hours; during this period of time the capacitor is
continuously clearing. Comparative experiments have shown that capacitance reduction for either
20 seconds of at-charge voltage or a single charge-discharge cycle combined with a 5 seconds
charging time to full charge voltage are equivalent. Thus a tradeoff, for the same life, is possible

of dc at-charge time against desired operational cycle life of the system.

Operating the capacitors below 80% of rated voltage results in a very long cycle-life (dominated
by thermal aging). Low level testing of the capacitors can be done for extended periods of time

with minimal, if any, consumption of life.

The one main operational design limit is the permissible peak current output during discharge.
Managing the current capability of the capacitor is an important part of the capacitor design. The
same characteristic that prevents the current-induced single point failure through concentrating
currents at a fault site will prevent the charge from leaving the capacitor too quickly. A rapid
discharge, such as a high-current crowbar fault, would cause a high percentage of the metallized
electrode to fracture. The capacitor capacitance will be severely reduced but could not be
measured under dc conditions. The capacitor will still withstand voltage but will no longer accept
a charge. Series current limiting fusing will constrain faults from reaching this intrinsic current

limit.

The peak current capability of a typical modern design, 16 kV, 50 kJ, 0.7 J/g, 10 000 shot

capacitor is:

e design peak current 40,000 A;

e design limit for full life operation 100,000 A;

e fault capacity with minor degradation 200,000 A.

Crowbarring this capacitor with a peak current in excess of 400,000 A will cause the damage
described above. A 200,000 A discharge will result in a measurable, but slight, degradation. The

capacitor will perform to specifications if the peak current is kept below 40,000 A.

The math modeling of MEC in Appendix D were conducted at much reduced currents to

minimize degradation.
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4.5. Chemical Double Layer Capacitors (Ultra Capacitors: A
developing technology)

Chemical Double Layer (CDL) capacitors are a new and novel form of liquid electrolytic
capacitors, optimized for use below the electrolysis point of the impregnant, thus allowing very
high capacitance’s to be achieved. In contrast to conventional electrolytic capacitors, the CDL

capacitor is a fully bipolar (i.e., polarity insensitive) capacitor when operated within its ratings.

CDL capacitors lend themselves to high energy density, lower power density, and modest dc
voltage. Individual capacitors typically have voltages of 2.5 VDC. Combining the capacitors in
series and parallel have been demonstrated to 100 VDC. Higher voltages are expected in the
future. Applications could consist of energy storage for electric vehicles, reservoir capacitors for
switched mode power supplies/systems, and power multipliers for battery powered systems (their
equivalent series resistance (ESR) being far less than modern batteries for discharge times down

to fractions of a second).

CDL capacitors have not been demonstrated at the number of parallel circuits being modeled in

this thesis.

4.6. Advantages:

There are numerous advantages to using capacitors for energy storage and pulsed power delivery.
The advantages listed are vaguely intuitive and will not be discussed. These advantages will be
more easily realized with the expected technological improvements in the future. However, the
advantages of

¢ high energy and power density,

e long life (50,000+ charge/discharge cycles),

e low life cycle costs,

e compactness,

e self containment,

e no hazardous associated chemicals, and

e no flammable gases

have to be compared with the advantages of other energy storage methods such as SMES,

batteries, compulsators, and flywheels.
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An additional advantage to capacitors is the easy determination of energy available based on the

voltage of the capacitor (knowing capacitance).

4.7. Disadvantages:

High energy pulsed power capacitors form a very small part of the total capacitor market in
general and the film capacitor market segment specifically. Incentives for the commercial market

will be economically difficult for research and development and later manufacturing.

4.8. Summary

In reviewing tables 4.1 and 4.2 below, specific energy and energy densities are listed for two
different considerations. The first is when the energy storage device is considered independently
of the pulsed power application. This is typically the published values of the commercial
manufacturers. The second is when the energy storage device is considered in use with the pulsed
power application. The impact derives from the level of power and the duration of the power
required by the pulsed power application. The energy released by the energy storage device is the

only energy needed, which of course reduces the specific energy and energy density of the energy

storage device.

EMALS ETG HOA
Specific.Power (MW/kg) 0.178 0.179 0.178
Specific.Energy_application (kJ/kg) 0.712 0.693 0.712
Specific.Energy_storage device (kJ/kg) 0.712 0.715 0.713
Power.Density (MW/m") 211.211 211.953 211.46
Energy.Density_application (MJ/m”) 0.845 0.822 0.845
Energy Density Storage device (MJ/m’) 0.845 0.848 0.846

Table 4.1: MEC Summary

EMALS ETG HOA
Specific.Power (kW/kg) 0.595 0.595 0.595
Specific.Energy_application (J/kg) 1.786E+3 5.952 4.464
Specific.Energy_storage device (kJ/kg) 14.063 14.063 14.063
Power.Density (MW/m”’) 0.595 0.595 0.595
Energy.Density_application (kJ/m’) 1.786E+3 5.952 4.464
Energy.Density_Storage device (MJ/m’) 14.063 14.063 14.063

Table 4.2: CDL Summary

CDL capacitors have not been demonstrated at power levels being proposed by this thesis.
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5. Compensated Pulsed Alternators (CPA)

5.0. Compulsator (CPA) Fundamentals

Compensated Pulsed Alternators (CPA), also known as Compulsators, is another form of kinetic
energy flywheel storage device. Injection of kinetic energy originates from a prime mover such as
a turbine, hydraulics, or even the electric machine itself (in the motor configuration). The kinetic
energy is then converted to electromagnetic power to be delivered to the load in nearly the same
manner as a classical electric machine (in the generator configuration). The difference lies in the

amount and duration of power delivered to the load.

Some classical electric generators use a portion of the armature windings electric output to excite
the field windings (self-excitation). The field windings in turn generate a rotating magnetic field,
which generates the armature windings electrical output. The electric generator is a power
amplifier with the output power (armature windings) to the excitation power (field windings)
being the ratio. The self-excitation begins with the residual magnetism of the machine (very
small) and builds to full power capacity at the magnetic saturation of the machine. This physical

limitation is due to the ferrous magnetic material of the machine.

An air core is used in the latest compulsators to remove the limitations of iron core saturation
with the peak flux density normally exceeding two Tesla. Using positive feedback, the field
windings cause a nearly exponential rise in power output of the armature windings. This implies
that the machine could be destroyed from thermal excesses for high power applications.
However, if the power is limited to a very short duration, then the power output can be quite high
without thermal ramifications. The intensity and duration of the pulse are the tradeoffs to prevent

thermal excesses.

Self-excitation applied to all types and topologies of electrical machines (homopolar and
heteropolar, synchronous and asynchronous, steady-state and pulsed operation), will achieve
almost exponentially (due to the positive feedback connection) high values of the excitation flux
densities. But since these values are maintained for a short duration, the excitation losses are

limited to reasonable values.
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5.1. Applications

The Cannon Caliber Electromagnetic Gun (CCEMG) generator (built at University of Texas) is a
self-excited compulsator of high power density and compactness capable of delivering 1.2 MJ to
a railgun for three five-round salvos at a short repetition rate of 5 Hz. The self-excited

compulsator stores 40 MJ at 12,000 rpm and weighs 2045 kg.

Parametrically evaluating the CCEMG generator results in a compulsator(s) weighing 409 metric
tons for EMALS, 818 metric tons for ETG, and 51,125 metric tons for Higher Order
Applications. Parametrically evaluating the CCEMG generator may not be accurate since a larger
compulsator may have a greater specific power, specific energy, power density, or energy

density. The stability and efficiency may also be questionable at very high power levels.

Thermodynamics prevents using Compulsators for EMALS or any other high power pulse of
significant time duration. However, Compulsators seem to be ideally suited for rail guns, which

require short, high-powered pulses with a high pulse repetition rate.

5.2. CPA Summary

Electric machines, which are used for electromagnetic launch and other pulsed power
applications are typically specialty machines with unique arrangements of windings, not usually
found in standard textbooks on electric machines. For machines used in pulsed power
applications, a good dynamic model is very important and very complicated. Compulsators
should be studied further to determine the applicability for very high order pulsed power of very
short time duration. The designing challenge will be to conduct tradeoff studies of pulse duration,

pulse intensity, volume, and weight limitations.

In order to drive weight and volume down, compulsator designers will strive for higher frequency
and higher gain for the field excitation. Higher frequency will result from either higher rotation
speeds or more poles, both of which will result in a smaller machine. The gain of the field exciter
circuit is a function of the volts generated per field amp and the resistance and inductance of the

field circuit.
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6. Batteries

6.0. Battery Fundamentals

A plethora of plate material, plate thickness, containment vessels, and electrolyte is available to
construct batteries. The SAFT nickel cadmium battery is commercially available and has been
proposed and is being used for high-power and high-energy commercial applications. The nickel
cadmium battery is modeled in this thesis since nothing serves as a greater selection process to

weed out weak products than the American capitalist system.

The following description of the charge/discharge cycle of the nickel cadmium battery is taken

directly from the SAFT tech manual provided at their website.

Discharge

2NiOOH + 2H,0 + Cd Charge

2 Ni(OH), + Cd(OH),

The nickel cadmium battery uses nickel hydroxide as the active material for the positive plate,
and cadmium hydroxide for the negative plate. The electrolyte is an aqueous solution of
potassium hydroxide containing small quantities of lithium hydroxide to improve cycle life and
high temperature operations. The electrolyte is used for ion transfer; it is not chemically changed
or degraded during the charge/ discharge cycle. In the case of the lead acid battery the positive
and negative active materials chemically react with the sulfuric acid and electrolyte resulting in

an aging process.

The steel support structure of both plates is unaffected by the electrochemistry, and retains its
characteristics throughout the life of the cell. In the case of the lead acid battery, the basic
structure of both plates is lead and lead oxide which both play a part in the electrochemistry of the

process and are naturally corroded during the life of the battery.
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6.1. Charge/Discharge Cycle

During the discharge the trivalent nickel hydroxide is reduced to divalent nickel hydroxide, and
the cadmium at the negative plate forms cadmium hydroxide. On charge, the reverse action takes
place until the cell potential rises to a level where the hydrogen is evolved at the negative plate

and oxygen at the positive plate which results in water loss.

Unlike the lead acid battery, there is little change in the electrolyte during charge and discharge.
This allows large reserves of electrolyte to be used without inconvenience to the electrochemistry

of the couple.

Thus, through it’s electrochemistry, the nickel-cadmium battery has more stable behavior than the
lead acid battery, giving it a longer life, superior characteristics, and a greater resistance against

abusive conditions. Nickel Cadmium batteries have a nominal voltage of 1.2 Volts per cell.

6.2. Other batteries

Other combinations of metals and electrolytes for batteries can be used to improve the impact on
individual characteristics such as the environment, the initial cost, better the life cycle, etc.
However, no dramatic improvement has been demonstrated for improving the recharge rate to

competitively challenge other pulse power storage devices (including Nickel Cadmium Batteries).

6.3. Analysis

The recharge rate for batteries is far too slow for the military applications being considered in this
thesis. To show this, all the following parameters in the math model in Appendix G are assumed

to be the under the best of conditions to present the best recharge rate possible.
Assumptions:

e Temperature degradation will not be considered.

e The voltage will be assumed at the greatest value for each cell.

e The deliverable amperage will be at the largest value even though the battery may not be

fully charged.
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e No other losses will be considered.

e The recharge rate will be at the “fast” recharge rate.

6.4. Advantages

Without being specific to actual values or directly comparing to other energy storage devices,

batteries have:

e ahigh specific power

¢ high specific energy

e high energy density

e high power density

o low initial cost

e and represent a mature technology.

The specific power and power density are not very impressive when comparing other energy

storage devices.

6.5. Disadvantages

All the above claimed advantages and not greatly investigated since the recharge time (greater

than 79 hours for EMALS) negates any perceived advantages.
Other disadvantages include:

¢ Hydrogen production during recharge

e Life cycle is dependent on the depth of charge/discharge
e Determination of energy within the batteries is difficult

¢ Maintenance requirements
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7. Conclusion

7.0. Analysis Description

In order to use pulsed high powered devices onboard ships, a method must be devised to deliver
vast amounts of power (short in duration) from power supplies which are not capable of
providing the required power levels. Assuming the relatively low power production of the ship
can be stored in an energy storage device over an extended time, the stored energy could then be
delivered to the high powered device for a short time duration thereby increasing the power

delivered.

The five energy storage devices that have been considered in this thesis are:
e Flywheels

e SMES

e (Capacitors

o Compulsators

o and Batteries.

The three pulsed high-powered devices considered to which the power would be delivered are:
e EMALS,

o ETG,

¢ and Higher Order Applications.

This is not inclusive of all possible high-powered pulsed devices but does represent a somewhat
broad spectrum of possible pulses that may be required onboard a ship. Other pulsed power
devices and pulses can easily be considered using the outlined mathematical approaches in the

appendixes.
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Combinations of an energy storage device that have high energy storage but low power output
capacity which could be routed to an air inductor (or capacitor bank) designed to power up and

then dump into the pulsed power device was not considered.

The math model assumed a three-phase power source of 450V and 2000A to recharge the energy
storage devices. With a larger power source, the recharge time would be significantly reduced and

vice versa. The recharge times are available in the appendices.

Matching voltages between the energy storage device and the pulse power application were not
taken into consideration with the exception of Ultra Capacitors (CDL) where it is necessary to

route the output through a dc to dc converter due to the low voltages inherent in CDL capacitors.

To keep the naval architecture plausible in considering the different energy storage devices, an
aircraft carrier was chosen to maximize the available weight and volume. Additionally, an aircraft
carrier has a greater electrical power production capacity thereby shortening the recharge time for

any energy storage device.

7.1. Disclaimer

Presently none of the listed energy storage devices have been demonstrated at the power levels
suggested by this thesis for EMALS, ETC, or HOA, although Flywheels and SMES have shown

the greatest promise with commercial utility systems.

Questionable assumptions made by the author include:

Parallel series connections for capacitors on the order of thousands of cells.

e Compulsators are being demonstrated on the order of 4kW. It is a great leap to assume

compulsators will be stable at the much greater suggested power levels in this thesis.

e Neglecting complicated mechanical and electrical interfaces, which are far beyond the scope

of this thesis, may have been detrimental to the overall analysis.

e General assumption for all energy storage devices that stability will be maintained at the

higher power levels being considered in this thesis.
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7.2. Elimination from Consideration

Prior to conducting a 5-way comparison to determine the initial best choice, some of the energy

storage devices can be eliminated for not meeting the minimum requirements.

7.2.1. Batteries

Batteries have a very large energy density (91.6MW/m”3). However the specific power and
power density are not very impressive. In order to meet the power levels of the pulsed power
devices, a very large number of batteries have to be used. This drives the applied energy density
down to 260 kJ/m”3 for EMALS and 173 J/m”3 for ETC. Although this is very detrimental to the
batteries competitiveness for consideration, it is the recharge rate of the batteries which eliminates

batteries from any further considerations.
The recharge rate for batteries is:

e EMALS: 79 hours

e ETC: 13 minutes

o Higher Order Applications: 16.5 hours

These are insurmountable numbers and therefore batteries will not be considered further.

7.2.2. SMES

The specific power of the SMES is very impressive, especially for the shorter pulsed applications.
This is greatly offset by the energy density, which is dismal at best. Normally this would not be
sufficient to eliminate SMES from the competition, however, SMES also has severe personnel
hazard issues. A SMES stores energy in a large electromagnetic field using large currents in a
cryogenic inductor made of superconductor material. The immediate area around the SMES
would be hazardous to personnel from the large magnetic field present outside the inductor,
unless contained. Additionally, if the SMES were to quench, all the stored energy would be
released thermally and kinetically. A very heavy iron containment vessel would be required for

both hazards. These safety issues negates SMES from further consideration.
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7.3. Comparisons

7.3.1. Specific Power

The specific power of the Metalized Electrode Capacitors at 178 kW/kg far exceeds the other

energy storage devices as shown in Figure 1.

Specific Power

Flywheels (Steel) }
i
0 Flywheels
(Composite)
m Capacitors (MEC)

m Capacitors (CDL)

m Compulsators

Specific Power kW/kg

Figure 1. Specific Power
7.3.2. Specific Energy per Energy Storage Device

In Figure 2, the specific energy of each energy storage device was compared ignoring the
application for which they could be applied. This is the claim the manufacturer is expected to
make with regards to their product. The result shows that the Composite Flywheels far exceed the

nearest competitor as shown.
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Figure 2. Specific Energy per Energy Storage Device
7.3.3. Specific Energy per Pulse Power Applications

The specific energy for Composite Flywheels when used for EMALS is 30 kJ/kg, much higher
than the nearest competitor as shown in Figure 3. There is a dramatic increase in the separation

between Composite Flywheels and the nearest competitor when EMALS is considered.

[
| Specific Energy per Pulse Power Application
|

| 35 S— 2 R ;@ Flyw heels (Steel) EMALS |
{m Flywheels (Steel) ETC |
\

pFlywheels (Steef) HOA
o Flywheels (Composite) EMALS i
m Fiyw heels (Composite) ETC |
 Flyw heels (Composite) HOA !
@ Capacitors (MEC) EMALS
1 Capacitors (MEC) ETC
@ Capacitors (MEC) HOA
m Capacitors (CDL) EMALS
m Capacitors (CDL) ETC
m Capacitors (CDL) HOA
: m Compulsators EMALS
o Compulsators ETC
ia Compulsators HOA

s

Specific Energy per pulse pow er application kJ/kg

Figure 3. Specific Energy per Pulse Power Application

When only ETC and HOA are considered, it is obvious that Metalized Electrode Capacitors far

exceed the performance of the other energy storage devices as shown in Figure 4.
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Specific Energy per Pulse Power Application for ETC and HOA
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Specific Energy per pulse pow er application kJ/kg

Figure 4. Specific Energy per Pulse Power Application for ETC and HOA

7.3.4. Power Density

The power density is more prominent in the Metalized Electrode Capacitors far exceeding any

other energy storage device with 211 MW/m”3 as shown in Figure 5.

i Power Density
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i
I
|
: m Compulsators !

50

Power Density MW/mA3

FigureS. Power Density
7.3.5. Energy Density per Storage Device

The energy density comparisons in Figure 6 show the energy density of Composite Flywheels is

at least twice the value of the nearest competitor, Ultra Capacitors (CDL).
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Figure 6. Energy Density per Storage Device

7.3.6. Energy Density per Pulse Power Application

Each energy storage device was compared when applied to a pulsed powered device. The energy
density for the Composite Flywheels dropped to 10.42 MJ/m”3. But the separation from the

nearest competitor increased dramatically as shown in Figure 7.

Energy Density per Pulse Power Application
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Figure 7. Energy Density per Pulse Power Application
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|

7.4. Pulse Power Device Comparisons

7.4.1. EMALS

The comparisons in section 7.3 seem to imply that Composite Flywheels should be used for
EMALS whereas Metalized Electrode Capacitors seem to be the choice for the shorter pulses
used with ETC and HOA.

This is again outlined with the size and weight of the energy storage devices which would be

required if they were used for EMALS, ETC, or HOA below.

The weights of the energy storage device required to power EMALS are displayed in Figure 8

where it is easily seen that batteries are the heaviest energy storage device being considered.

EMALS Weight

[mFlywheels (Steel)
%D Flywheels (Composite} '
|mSMES ;
\ m Capacitors (MEC)
| @ Capacitors (CDL)
1 m Compulsators

i O Batteries

Weight

Figure 8. EMALS Weight

The volumes of the energy storage device required to power EMALS are displayed in Figure 9
where it can be seen that SMES takes up the largest volume of the energy storage devices being

considered.
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Figure 9. EMALS Volume
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values for weight and volume as outlined in the next two figures below. Figure 10 shows the

Composite Flywheels are the lightest energy storage device considered for use with EMALS.

mT

EMALS 1/Weight

OFlywheels (Steel)
}D Flywheels {Composite}
B SMES

Figure 10.

1/Weight

EMALS Inverse Weight
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Composite Flywheels are also occupy the smallest volume of space when comparing the energy

storage devices being applied to EMALS as shown in Figure 11.

EMALS 1/Volume

[DFlywheels (Steel) |
OFiywheels (Composite)
DSMES

m Capacitors (MEC)
mCapacitors (CDL)
mCompulsators

pBatteries

1/m*3

1/Volume

Figure 11. EMALS Inverse Volume

The weights of the energy storage device required to power ETC are displayed in Figure 12

where it is easily seen that batteries are the heaviest energy storage device being considered.
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Figure 12. ETC Weight
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The volumes of the energy storage device required to power ETC are displayed in Figure 13
where it can be seen that Compulsators takes up the largest volume of the energy storage devices

being considered.

ETC Volume
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Figure 13. ETC Volume

Unfortunately the larger weight and volumes are shown, but the data of interest is the minimum

values for weight and volume. These are outlined in the next two figures below.

Figure 10 shows that SMES are the lightest of the energy storage devices which are considered
for use with ETC. However, SMES is not to be considered as discussed earlier due to

disqualifying characteristics as discussed above. If the safety issues can be addressed, SMES may

be a viable solution with ETC.

The lightest energy storage device being considered is the Metalized Electrode Capacitor bank.
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Figure 14. ETC Inverse Weight

Metalized Electrode Capacitors also occupy the smallest volume of space when comparing the

energy storage devices being applied to ETC as shown in Figure 15.
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Figure 15. ETC Inverse Volume
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7.4.3. HOA

The weights of the energy storage device required to power HOA are displayed in Figure 16

where it is easily seen that batteries are the heaviest energy storage device being considered.
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Figure 16. HOA Weight
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The volumes of the energy storage device required to power HOA are displayed in Figure 17

where it can be seen that Compulsators takes up the largest volume of the energy storage devices

being considered.
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@ HOA Flywheels (Composite)f

L) HOA SMES |
| HOA Capacitors (MEC) ‘
| mHOA Capacitors (CDL) |
}DHOA Compulsators !
‘HOA Batteries

Unfortunately the larger weight and volumes are shown, but the data of interest is the minimum

values for weight and volume. These are outlined in the next two figures below.

Figure 18 shows that SMES is the lightest of the energy storage devices that are considered for

use with ETC. However, SMES is not to be considered as discussed earlier due to disqualifying

characteristics as discussed above. If the safety issues can be addressed, SMES may be a viable

solution with ETC. The lightest energy storage device being considered is the Metalized

Electrode Capacitor

bank.
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Figure 18. HOA Inverse Weight
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’ Metalized Electrode Capacitors also occupy the smallest volume of space when comparing the

energy storage devices being applied to ETC as shown in Figure 19.
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|
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i
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Figure 19. HOA Inverse Volume
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|
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7.5. Summary

Currently the best choice for EMALS is Composite Flywheels and the best choice for either ETC
or HOA is Metalized Electrode Capacitors. This may change depending upon the following:

e Other information may become available which was not considered due to the ignorance of

the author.
e Technology improvements not currently forecast.

e Assumptions by the author that are inaccurate (Voltage matching between energy storage

device and pulse power device, PRR, rise time requirements, etc).
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Appendix F: Compulsators

CCEMG parameters

Power Required 400000 \

Energy Required 40000000 J

Power Duration 3 sec

PRR 3 sec Best guess using picture. Supporting structure taken into account
Weight 2045 kg
Volume (ft3) 432 ft"3
Application Parameters EMALS ETG Higher Order Applications

Power Required 40 MW 160 MW 10 GW
Energy Required - 121 MJ 400 kJ 20 MJ
Power Duration 3 sec 2.5 msec 2 msec
PRR 45 sec 5 sec .1 sec

Using a parametric comparison, how many compulsators are required to
meet the demands of the above application parameters?
Equivalently, what would be the size of a compulsator which is enlarged to

provide the demands of the above application parameters?

Power (W) Energy (J) Duration (sec) Weight (kg)  Volume (m*3)

CCEMG 400000 40000000 3 2045 12.2328576
EMALS 40000000 120000000 3
# of CCEMGs 100 3 1 204500 1223.28576
ETG 160000000 400000 0.0025
# of CCEMGs 400 0.01 8.33333E-04 818000 4893.14304
Higher Order Applications 10000000000 20000000 0.002
# of CCEMGs 25000 0.5 6.66667E-04 51125000 305821.44
Specific Power Specific Specific Energy Power Energy Density Energy
Energy per per energy Density per pulse power Density per
pulse power storage device application energy
application ’ storage
device
CCEMG Wikg Jkg J/kg W/m*3 J/im"3 J/imh3
EMALS
# of CCEMGs 1955699022  586.797066 19559.9022 32698.8192 98096.45785 3269881.928
ETG

# of CCEMGs 195.599022 0.488997555 19559.9022 32698.8192 81.74704821 0.002452411

Higher Order Applications

# of CCEMGs 195.509022 0.391198044 19559.9022 32698.8192 65.39763857 2.04368E-06
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